STAT 2593 Formula Sheet

Measures of Location and Variability

Mean: $\quad \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}$
Median: If n is even then $\tilde{x}=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { obs. }+\left(\frac{n+1}{2}\right)^{\text {th }} \text { obs. }}{2}$ If n is odd then $\tilde{x}=\frac{n+1}{2}^{\text {th }}$ obs.
Range: $\quad x_{\text {max }}-x_{\text {min }}$
Variance: $\quad s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}}{n-1}$
IQR: $\quad \mathrm{IQR}=\mathrm{Q} 3-\mathrm{Q} 1$

Discrete Random variables

Probability Mass Function (pmf): $p(x)=P(X=x)$

1. $1 \geq p(x) \geq 0$ for all x in X
2. $\sum_{x} p(x)=1$

Cumulative Distributive Function (cdf): $F(x)=P(X \leq x)=\sum_{k \leq x} f(k)$

$$
\begin{array}{ll}
\text { Mean }(\mu): & E(X)=\sum_{x} x f(x) \\
\text { Expected value: } & E(g(X))=\sum_{x} g(x) f(x) \\
\text { Variance }\left(\sigma^{2}\right): & \operatorname{var}(X)=\sum_{x}(x-\mu)^{2} f(x)=E\left(X^{2}\right)-[E(X)]^{2} \\
\mathrm{SD}(\sigma): & S D(X)=\sqrt{\operatorname{var}(X)}
\end{array}
$$

Basic Probability Rules

- General Addition Rule: $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- Complement Rule: $P\left(A^{c}\right)=1-P(A)$
- $P(\emptyset)=0$ and $P(S)=1$
- $0 \leq P(A) \leq 1$ for all A
- $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$ and $P(B \mid A)=\frac{P(A \cap B)}{P(A)}$
- Multiplication Rule: $P(A \cap B)=P(B) \times P(A \mid B)=P(A) \times P(B \mid A)$
- Law of Total Probability: $P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+\cdots+P\left(B \mid A_{k}\right) P\left(A_{k}\right)$ where A_{1}, \ldots, A_{k} form a partition of the sample space.
- $A \perp B$ if and only if $P(A \cap B)=P(A) P(B)$
- Bayes' Theorem: $P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B \mid A_{i}\right)}$

Counting Rules

- Product rule for counting: n_{j} choices for decision $j ; n_{1} \times \cdots \times n_{k}$ total choices
- Permutations are given by $P_{k, n}=\frac{n!}{(n-k)!}$.
- Combinations are given by $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.

Continuous Random variables

Probability Density Function (pdf): $P(a \leq X \leq b)=\int_{a}^{b} f(x) d x=F(b)-F(a)$

1. $f(x) \geq 0$ for all x
2. $\int_{-\infty}^{\infty} f(x) d x=1$

Cumulative Distributive Function (cdf): $F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t$
Median: $\quad x$ such that $F(x)=0.5$
Q_{1} and $Q_{3}: \quad x$ such that $F(x)=0.25$ and x such that $F(x)=0.75$
Mean (μ) : $\quad E(X)=\int_{-\infty}^{\infty} x f(x) d x$
Expected value: $\quad E(g(X))=\int_{-\infty}^{\infty} g(x) f(x) d x$
Variance $\left(\sigma^{2}\right): \quad \operatorname{var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=E\left(X^{2}\right)-[E(X)]^{2}$
$\mathrm{SD}(\sigma): \quad S D(X)=\sqrt{\operatorname{var}(X)}$

Expectation and Variance Rules

- $E(a X+b)=a E(X)+b$, for $a, b \in \mathbb{R}$
- $E(X+Y)=E(X)+E(Y)$, for all pairs of X and Y
- $\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)$, for $a, b \in \mathbb{R}$
- $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$, for independent X and Y

Uniform and Exponential

$X \sim \operatorname{Unif}(a, b)$
Mean: $\quad \mu=E(X)=\frac{a+b}{2}$
Variance: $\quad \sigma^{2}=\operatorname{var}(X)=\frac{(b-a)^{2}}{12}$
pdf of X
$f(x)= \begin{cases}\frac{1}{b-a} & a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}$
cdf of X

$$
F(x)= \begin{cases}0 & x<a \\ \frac{x-a}{b-a} & a \leq x \leq b \\ 1 & x>b\end{cases}
$$

$X \sim \operatorname{Exp}(\lambda)$
Mean: $\quad \mu=E(X)=\frac{1}{\lambda}$
Variance: $\quad \sigma^{2}=\operatorname{var}(X) \stackrel{\lambda}{=} \frac{1}{\lambda^{2}}$
pdf of X
$f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0\end{cases}$

Normal Distribution

$X \sim N\left(\mu, \sigma^{2}\right)$
Standard Normal: $Z \sim N(0,1)$ where $Z=\frac{X-\mu}{\sigma}$; cdf denoted as $\Phi(z)$
Empirical Rule:

- approximately 68% of observations fall within σ of μ
- approximately 95% of observations fall within 2σ of μ
- approximately 99.7% of observations fall within 3σ of μ

Bernoulli and Binomial Random variables

$$
\begin{aligned}
& X \sim \operatorname{Bernoulli}(p) \\
& \text { pmf: } P(X=x)=p^{x}(1-p)^{1-x} \text { for } x=0,1 \\
& \text { Mean: } \quad \mu=E(X)=p \\
& \text { Variance: } \quad \sigma^{2}=\operatorname{var}(X)=p(1-p) \\
& X \sim \operatorname{Bin}(n, p) \\
& \text { pmf: } P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} \text { for } x=0,1,2, \ldots, n \\
& \text { Mean: } \quad \mu=E(X)=n p \\
& \text { Variance: } \quad \sigma^{2}=\operatorname{var}(X)=n p(1-p)
\end{aligned}
$$

```
Geometric Distribution
\(X \sim \operatorname{Geo}(p)\)
pmf: \(P(X=x)=p(1-p)^{x-1}\) for \(x=1,2,3, \ldots\)
Mean: \(\quad \mu=E(X)=\frac{1}{p}\)
Variance: \(\quad \sigma^{2}=\operatorname{var}(X) \stackrel{p}{p} \frac{1-p}{p^{2}}\)
```


Hypergeometric Distribution

$X \sim \operatorname{Hypgeo}(N, M, n)$
pmf: $P(X=x)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{n}{n}}$ for $x=\max \{0, n-N+M\}, \ldots, \min \{n, M\}$.
Mean: $\quad \mu=E(X)=n \frac{M}{N}$
Variance: $\quad \sigma^{2}=\operatorname{var}(X)=\frac{N-n}{N-1} \cdot n \cdot \frac{M}{N} \cdot\left(1-\frac{M}{N}\right)$

Negative Binomial Distribution

$X \sim \mathrm{NB}(r, p)$

pmf: $P(X=x)=\binom{x+r-1}{r-1} p^{r}(1-p)^{x}$ for $x=0,1,2,3, \ldots$
Mean: $\quad \mu=E(X)=\frac{r(1-p)}{p}$
Variance: $\quad \sigma^{2}=\operatorname{var}(X)=\frac{p}{p(1-p)} p^{2}$

Poisson Distribution

$X \sim \operatorname{Poi}(\lambda) \underline{p m f}: P(X=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}$ for $x=0,1,2,3, \ldots$
cdf: $P(X \leq x)=\sum_{i=0}^{x} \frac{\lambda^{i} e^{-\lambda}}{i!}$ for $x=0,1,2,3, \ldots$
Mean:

$$
\mu=E(X)=\lambda
$$

Variance: $\quad \sigma^{2}=\operatorname{var}(X)=\lambda$

Central Limit Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an arbitrary population/distribution with mean μ and Variance σ^{2}. When n is large ($n \geq 30$) then
$\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)$, approx.

Point Estimators

- $\operatorname{Bias}=E[\widehat{\theta}]-\theta$.
- $\operatorname{MSE}(\widehat{\theta})=E\left[(\widehat{\theta}-\theta)^{2}\right]$
- $\operatorname{MSE}(\widehat{\theta})=\operatorname{Bias}(\widehat{\theta})^{2}+\operatorname{var}(\widehat{\theta})$

Confidence Interval for Mean

General Form: point estimate \pm margin of error
When σ^{2} is known: $\bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$
When σ^{2} is unknown $(Z): \bar{x} \pm Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$
When σ^{2} is unknown $(t): \bar{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}$

Pooled Variance

Requires assumptions that population Variances are equal: $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$ $s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}$

Critical Values

- $\Phi(-2.58)=0.005$;
- $\Phi(-1.96)=0.025$;
- $\Phi(-1.645)=0.05$;
- $\Phi(1.645)=0.95$;
- $\Phi(1.96)=0.975$;
- $\Phi(2.58)=0.995$

